Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.975
Filtrar
1.
Sci Rep ; 14(1): 10863, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740831

RESUMEN

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Asunto(s)
Cricetulus , Cininas , Neuropéptidos , Peristaltismo , Animales , Cininas/metabolismo , Células CHO , Neuropéptidos/metabolismo , Neuropéptidos/genética , Músculos/metabolismo , Músculos/fisiología , Garrapatas/metabolismo , Garrapatas/fisiología , Rhipicephalus/metabolismo , Rhipicephalus/fisiología , Rhipicephalus/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética
3.
Heart Fail Rev ; 29(3): 729-737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381277

RESUMEN

Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.


Asunto(s)
Insuficiencia Cardíaca , Sistema Calicreína-Quinina , Calicreínas , Cininas , Sistema Renina-Angiotensina , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Sistema Calicreína-Quinina/fisiología , Cininas/metabolismo , Calicreínas/metabolismo , Sistema Renina-Angiotensina/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal , Bradiquinina/metabolismo
4.
Expert Opin Investig Drugs ; 33(3): 191-200, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366937

RESUMEN

INTRODUCTION: Hereditary angioedema (HAE) is a rare genetic disorder characterized by recurrent edema and predominantly caused by the dysregulation of the kinin-kallikrein system. AREAS COVERED: This manuscript presents the results of preclinical and early clinical trials of newer drugs targeting the dysregulated kinin-kallikrein system. ATN-249 is an oral drug that has shown promising results in preclinical and Phase I studies, and good tolerability in the prophylactic treatment of attacks. KVD900 is also an oral agent developed for the on-demand treatment of HAE attacks. It has shown positive results in Phase I/II studies, with rapid absorption. The third drug, IONIS-PKKRx, is an antisense oligonucleotide targeting plasma prekallikrein mRNA. It has shown a dose-dependent reduction of plasma prekallikrein levels and proenzyme activation in Phase I/II studies, and has shown promising results. STAR-0215 is a long acting anti-activated kallikrein monoclonal antibody. A Phase 1a single ascending dose trial evaluated its safety, pharmacokinetics, and pharmacodynamics. Lastly, NTLA-2002 is an investigational gene-editing therapy. EXPERT OPINION: The targeted treatment of the dysregulated kinin-kallikrein system with specific inhibitors is promising for the prevention of angioedema attacks. Ongoing phase III studies will provide further insight into the efficacy and long-term safety of these novel therapies, potentially expanding treatment options for HAE treatment.


Asunto(s)
Angioedema , Angioedemas Hereditarios , Calicreínas , Humanos , Angioedema/tratamiento farmacológico , Angioedemas Hereditarios/tratamiento farmacológico , Proteína Inhibidora del Complemento C1/uso terapéutico , Calicreínas/antagonistas & inhibidores , Cininas , Precalicreína , Pirazoles , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto
5.
Mol Cell Endocrinol ; 579: 112085, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827227

RESUMEN

Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.


Asunto(s)
Epinefrina , Cininas , Ratones , Animales , Homeostasis , Catecolaminas , Glucosa , Norepinefrina
6.
Peptides ; 172: 171135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103839

RESUMEN

The causative agent for Chagas disease, Trypanosoma cruzi, is transmitted to a human host in the urine/feces of the kissing bug, Rhodnius prolixus, following blood feeding. Kinins are important chemical messengers in the overall control of blood feeding physiology in R. prolixus, including hindgut contractions and excretion. Thus, disruption in kinin signaling would have damaging consequences to the insect but also interfere with the transmission of Chagas Disease. Here, a heterologous functional receptor assay was used to confirm the validity of the previously cloned putative kinin G-protein-coupled receptor, RhoprKR, in Rhodnius prolixus. Three native R. prolixus kinins were chosen for analysis; two possessing the typical kinin WGamide C-terminal motif and one that possesses an atypical C-terminal WAamide. All three are potent (EC50 values in the nM range), with high efficacy, on CHO-K1-aeq cells expressing the RhoprKR, thereby confirming ligand binding. Members of three other R. prolixus peptide families, which are also myotropins (tachykinins, pyrokinins and sulfakinins) elicited little or no response. In addition, this heterologous receptor assay was used to test characteristics of kinin mimetics previously tested on tick and mosquito kinin receptors. Five α-aminoisobutyric acid (Aib) containing analogs were tested, and four found to have considerably higher potencies than the native kinins, with EC50 values in the pM range. Interestingly, adding Aib to the atypical WAamide kinin improves its EC50 value from 2 nM to 39 pM. Biostable kinin analogs may prove useful leads for novel pest control strategies. Since T. cruzi is transmitted to a human host in the urine/feces after blood feeding, disruption in kinin signaling would also interfere with the transmission of Chagas Disease.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Cricetinae , Animales , Humanos , Cininas/metabolismo , Rhodnius/metabolismo , Mosquitos Vectores , Cricetulus , Vectores de Enfermedades
7.
Inflamm Res ; 72(10-11): 1957-1963, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37750921

RESUMEN

Kinins are a set of peptides present in tissues and involved in cardiovascular regulation, inflammation, and pain. Here, we briefly comment on recent key findings on the use of kinins in regenerative medicine.


Asunto(s)
Inflamación , Cininas , Humanos , Cininas/fisiología , Péptidos/uso terapéutico , Dolor , Bradiquinina/fisiología
8.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626917

RESUMEN

Evidence suggests that patients with long COVID can experience neuropsychiatric, neurologic, and cognitive symptoms. However, these clinical data are mostly associational studies complicated by confounding variables, thus the mechanisms responsible for persistent symptoms are unknown. Here we establish an animal model of long-lasting effects on the brain by eliciting mild disease in K18-hACE2 mice. Male and female K18-hACE2 mice were infected with 4 × 103 TCID50 of SARS-CoV-2 and, following recovery from acute infection, were tested in the open field, zero maze, and Y maze, starting 30 days post infection. Following recovery from SARS-CoV-2 infection, K18-hACE2 mice showed the characteristic lung fibrosis associated with SARS-CoV-2 infection, which correlates with increased expression of the pro-inflammatory kinin B1 receptor (B1R). These mice also had elevated expression of B1R and inflammatory markers in the brain and exhibited behavioral alterations such as elevated anxiety and attenuated exploratory behavior. Our data demonstrate that K18-hACE2 mice exhibit persistent effects of SARS-CoV-2 infection on brain tissue, revealing the potential for using this model of high sensitivity to SARS-CoV-2 to investigate mechanisms contributing to long COVID symptoms in at-risk populations. These results further suggest that elevated B1R expression may drive the long-lasting inflammatory response associated with SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Femenino , Masculino , Animales , Humanos , Ratones , COVID-19/complicaciones , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Enfermedades Neuroinflamatorias , Cininas
9.
Med Oncol ; 40(8): 224, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405520

RESUMEN

Despite campaigns and improvements in detection and treatment, lung cancer continues to increase worldwide and represents a major public health problem. One approach to treating patients suffering from lung cancer is to target surface receptors overexpressed on tumor cells, such as GPCR-family kinin receptors, and proteases that control tumor progression, such as kallikrein-related peptidases (KLKs). These proteases have been visualized in recent years due to their contribution to the progression of cancers, such as prostate and ovarian cancer, facilitating the invasive and metastatic capacity of tumor cells in these tissues. In fact, KLK3 is the specific prostate antigen, the only tissue-specific biomarker used to diagnose this malignancy. In lung cancer to date, evidence indicates that KLK5, KLK6, KLK8, KLK11, and KLK14 are the major peptidases regulated and involved in its progression. The expression levels of KLKs in this neoplasm are modulated by the secretome of the different cell types present in the tumor microenvironment, the cancer subtype and the tumor stage, among others. Considering the multiple functions of kinin receptors and KLKs, this review highlights their roles, even considering the SARS-CoV-2 effects. Since lung cancer is often diagnosed in advanced stages, our efforts should focus on early diagnosis, validating for example specific KLKs, especially in high-risk populations such as smokers and people exposed to carcinogenic fumes, oil fields, and contaminated workplaces, unexplored fields to investigate. Furthermore, their modulation could be considered as a promising approach in lung cancer therapeutics.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Masculino , Humanos , Calicreínas de Tejido/metabolismo , Calicreínas , Cininas , SARS-CoV-2 , Microambiente Tumoral
10.
BMC Musculoskelet Disord ; 24(1): 396, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202736

RESUMEN

OBJECTIVE: Patients with rheumatoid arthritis (RA) have shown increased levels of neutrophils generating kallikrein-kinin peptides in blood which are potent mediators of inflammation. This study investigated the association between the bioregulation of kinin-mediated inflammation with the clinical, quality of life, and imaging characteristics (e.g. ultrasonography) of different arthritides. METHODS: Patients with osteoarthritis (OA, n = 29), gout (n = 10) and RA (n = 8) were recruited and screened for clinical symptoms, quality of life, and ultrasonographical assessment of arthritis. Blood neutrophils were assessed for the expression of bradykinin receptors (B1R and B2R), kininogens and kallikreins by immunocytochemistry with visualization by bright field microscopy. Levels of plasma biomarkers were measured by ELISA and cytometric bead array. RESULTS: Quality of life (SF-36 domains and summary scores; including pain; and, HAQ) was similar across OA, gout and RA patients; with the exception of worse physical functioning scores between OA and gout patients. Synovial hypertrophy (on ultrasound) differed between groups (p = 0.001), and the dichotomised Power Doppler (PD) score of greater than or equal to 2 (PD-GE2) was marginally significant (p = 0.09). Plasma IL-8 were highest in patients with gout followed by RA and OA (both, P < 0.05). Patients with RA had higher plasma levels of sTNFR1, IL-1ß, IL-12p70, TNF and IL-6, compared to OA and gout patients (all, P < 0.05). Patients with OA had higher expression of K1B and KLK1 on blood neutrophils followed by RA and gout patients (both, P < 0.05). Bodily pain correlated with B1R expression on blood neutrophils (r = 0.334, p = 0.05), and inversely with plasma levels of CRP (r = -0.55), sTNFR1 (r = -0.352) and IL-6 (r = -0.422), all P < 0.05. Expression of B1R on blood neutrophils also correlated with Knee PD (r = 0.403) and PD-GE2 (r = 0.480), both P < 0.05. CONCLUSIONS: Pain levels and quality of life were similar between patients with OA, RA and gout with knee arthritis. Plasma inflammatory biomarkers and B1R expression on blood neutrophils correlated with pain. Targeting B1R to modulate the kinin-kallikrein system may pose as a new therapeutic target in the treatment of arthritis.


Asunto(s)
Artritis Reumatoide , Gota , Osteoartritis , Humanos , Calicreínas/análisis , Calicreínas/metabolismo , Cininas/análisis , Cininas/metabolismo , Interleucina-6/metabolismo , Calidad de Vida , Artritis Reumatoide/diagnóstico , Osteoartritis/metabolismo , Gota/diagnóstico por imagen , Biomarcadores/metabolismo , Fenotipo , Dolor/metabolismo , Líquido Sinovial/metabolismo
11.
J Thromb Haemost ; 21(4): 814-827, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36990522

RESUMEN

BACKGROUND: Human serum albumin (HSA) is the most abundant plasma protein and is sensitive to glycation in vivo. The chronic hyperglycemic conditions in patients with diabetes mellitus (DM) induce a nonenzymatic Maillard reaction that denatures plasma proteins and forms advanced glycation end products (AGEs). HSA-AGE is a prevalent misfolded protein in patients with DM and is associated with factor XII activation and downstream proinflammatory kallikrein-kinin system activity without any associated procoagulant activity of the intrinsic pathway. OBJECTIVES: This study aimed to determine the relevance of HSA-AGE toward diabetic pathophysiology. METHODS: The plasma obtained from patients with DM and euglycemic volunteers was probed for activation of FXII, prekallikrein (PK), and cleaved high-molecular-weight kininogen by immunoblotting. Constitutive plasma kallikrein activity was determined via chromogenic assay. Activation and kinetic modulation of FXII, PK, FXI, FIX, and FX via in vitro-generated HSA-AGE were explored using chromogenic assays, plasma-clotting assays, and an in vitro flow model using whole blood. RESULTS: Plasma obtained from patients with DM contained increased plasma AGEs, activated FXIIa, and resultant cleaved cleaved high-molecular-weight kininogen. Elevated constitutive plasma kallikrein enzymatic activity was identified, which positively correlated with glycated hemoglobin levels, representing the first evidence of this phenomenon. HSA-AGE, generated in vitro, triggered FXIIa-dependent PK activation but limited the intrinsic coagulation pathway activation by inhibiting FXIa and FIXa-dependent FX activation in plasma. CONCLUSION: These data indicate a proinflammatory role of HSA-AGEs in the pathophysiology of DM via FXII and kallikrein-kinin system activation. A procoagulant effect of FXII activation was lost through the inhibition of FXIa and FIXa-dependent FX activation by HSA-AGEs.


Asunto(s)
Calicreínas , Calicreína Plasmática , Humanos , Calicreínas/metabolismo , Calicreína Plasmática/metabolismo , Cininas , Factor XIIa/metabolismo , Quininógeno de Alto Peso Molecular/metabolismo , Precalicreína/metabolismo , Albúminas , Productos Finales de Glicación Avanzada
12.
J Pept Sci ; 29(1): e3444, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35900188

RESUMEN

Insect kinins are endogenous, biologically active peptides with various physiological functions. The use of insect kinins in plant protection is being evaluated by many groups. Some kinins have been chosen as lead compounds for pest control. We previously reported an insect kinin mimic IV-3 that had insecticidal activity. And by introducing a strong electron withdrawing group (-CF3 ) on the benzene ring (Phe2 ), we discovered a compound, L7 , with better activity than lead IV-3. In this work, taking L7 as the lead compound, we designed and synthesized 13 compounds to evaluate the influence of position 4 (Trp4 ) of insect kinin on insecticidal activity, by replacing the H atom on tryptophan with -CH3 and -Cl or substituting the indole ring of tryptophan with the benzene, naphthalene, pyridine, imidazole, cyclohexane, and alkyl carboxamides. The aphid bioassay results showed that the compounds M1 , M3 , and M5 were more active than the positive control, pymetrozine. Especially, replacing the side chain by an indole ring with 4-Cl substitution (M1 , LC50 = 0.0029 mmol/L) increased the aphicidal activity. The structure-activity relationships (SARs) indicated that the side chain benzene ring at this position may be important to the aphicidal activity. In addition, the toxicity prediction by Toxtree, and the toxicity experiments on Apis mellifera suggested that M1 was no toxicity risk on a non-target organism. It could be used as a selective and bee-friendly insecticide to control aphids.


Asunto(s)
Áfidos , Animales , Abejas , Benceno , Cininas , Triptófano
13.
J Vis Exp ; (190)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36533828

RESUMEN

G protein-coupled receptors (GPCRs) represent the largest superfamily of receptors and are the targets of numerous human drugs. High-throughput screening (HTS) of random small molecule libraries against GPCRs is used by the pharmaceutical industry for target-specific drug discovery. In this study, an HTS was employed to identify novel small-molecule ligands of invertebrate-specific neuropeptide GPCRs as probes for physiological studies of vectors of deadly human and veterinary pathogens. The invertebrate-specific kinin receptor was chosen as a target because it regulates many important physiological processes in invertebrates, including diuresis, feeding, and digestion. Furthermore, the pharmacology of many invertebrate GPCRs is poorly characterized or not characterized at all; therefore, the differential pharmacology of these groups of receptors with respect to the related GPCRs in other metazoans, especially humans, adds knowledge to the structure-activity relationships of GPCRs as a superfamily. An HTS assay was developed for cells in 384-well plates for the discovery of ligands of the kinin receptor from the cattle fever tick, or southern cattle tick, Rhipicephalus microplus. The tick kinin receptor was stably expressed in CHO-K1 cells. The kinin receptor, when activated by endogenous kinin neuropeptides or other small molecule agonists, triggers Ca2+ release from calcium stores into the cytoplasm. This calcium fluorescence assay combined with a "dual-addition" approach can detect functional agonist and antagonist "hit" molecules in the same assay plate. Each assay was conducted using drug plates carrying an array of 320 random small molecules. A reliable Z' factor of 0.7 was obtained, and three agonist and two antagonist hit molecules were identified when the HTS was at a 2 µM final concentration. The calcium fluorescence assay reported here can be adapted to screen other GPCRs that activate the Ca2+ signaling cascade.


Asunto(s)
Calcio , Rhipicephalus , Animales , Humanos , Calcio/análisis , Ensayos Analíticos de Alto Rendimiento , Cininas/química , Cininas/farmacología , Receptores Acoplados a Proteínas G , Cricetulus
14.
J Transl Med ; 20(1): 590, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514072

RESUMEN

BACKGROUND AND AIMS: Kinin B1 receptors (B1Rs) are implicated in the pathogenesis of fibrosis. This study examined the anti-fibrotic effects of B1R blockade with BI 113823 in two established mouse models of hepatic fibrosis induced by intraperitoneal carbon tetrachloride (CCl4) injection or bile duct ligation (BDL). The mechanisms underlying the protection afforded by B1R inhibition were examined using human peripheral blood cells and LX2 human hepatic stellate cells (HSCs). METHODS: Fibrotic liver diseases were induced in mice by intraperitoneal carbon tetrachloride (CCl4) injection for 6 weeks, and by bile duct ligation (BDL) for 3 weeks, respectively. Mice received daily treatment of vehicle or BI 113823 (B1R antagonist) from onset of the experiment until the end of the study. RESULTS: B1Rs were strongly induced in fibrotic mouse liver. BI 113823 significantly attenuated liver fibrosis and portal hypertension (PH), and improved survival in both CCl4 and BDL mice. BI 113823 significantly reduced the expression of fibrotic proteins α-SMA, collagens 1, 3, 4, and profibrotic growth factors PDGF, TGFß, CTGF, VEGF, proliferating cell nuclear antigen; and reduced hepatic Akt phosphorylation in CCl4- and BDL-induced liver fibrosis. BI 113823 also reduced expression of Cytokines IL-1, IL-6; chemokines MCP-1, MCP-3 and infiltration of inflammatory cells; and inhibited human monocyte and neutrophil activation, transmigration, TNF-α & MPO production in vitro. BI 113823 inhibited TGF-ß and B1R agonist-stimulated human-HSC activation, contraction, proliferation, migration and fibrosis protein expression, and inhibited activation of PI3K/Akt signalling pathway. CONCLUSIONS: B1Rs merits consideration as a novel therapeutic target for chronic liver fibrosis and PH.


Asunto(s)
Hipertensión Portal , Cirrosis Hepática , Receptores de Péptidos , Animales , Humanos , Ratones , Tetracloruro de Carbono , Fibrosis , Células Estrelladas Hepáticas , Hipertensión Portal/complicaciones , Hipertensión Portal/tratamiento farmacológico , Hipertensión Portal/metabolismo , Cininas/metabolismo , Cininas/farmacología , Cininas/uso terapéutico , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Péptidos/antagonistas & inhibidores
15.
Front Immunol ; 13: 997148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203598

RESUMEN

Hereditary angioedema (HAE) is a rare disease where known causes involve C1 inhibitor dysfunction or dysregulation of the kinin cascade. The updated HAE management guidelines recommend performing genetic tests to reach a precise diagnosis. Unfortunately, genetic tests are still uncommon in the diagnosis routine. Here, we characterized for the first time the genetic causes of HAE in affected families from the Canary Islands (Spain). Whole-exome sequencing data was obtained from 41 affected patients and unaffected relatives from 29 unrelated families identified in the archipelago. The Hereditary Angioedema Database Annotation (HADA) tool was used for pathogenicity classification and causal variant prioritization among the genes known to cause HAE. Manual reclassification of prioritized variants was used in those families lacking known causal variants. We detected a total of eight different variants causing HAE in this patient series, affecting essentially SERPING1 and F12 genes, one of them being a novel SERPING1 variant (c.686-12A>G) with a predicted splicing effect which was reclassified as likely pathogenic in one family. Altogether, the diagnostic yield by assessing previously reported causal genes and considering variant reclassifications according to the American College of Medical Genetics guidelines reached 66.7% (95% Confidence Interval [CI]: 30.1-91.0) in families with more than one affected member and 10.0% (95% CI: 1.8-33.1) among cases without family information for the disease. Despite the genetic causes of many patients remain to be identified, our results reinforce the need of genetic tests as first-tier diagnostic tool in this disease, as recommended by the international WAO/EAACI guidelines for the management of HAE.


Asunto(s)
Angioedemas Hereditarios , Angioedemas Hereditarios/diagnóstico , Angioedemas Hereditarios/epidemiología , Angioedemas Hereditarios/genética , Proteína Inhibidora del Complemento C1/genética , Humanos , Cininas , España/epidemiología
16.
Life Sci ; 309: 121034, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208659

RESUMEN

The Kallikrein-Kinin System (KKS) plays an important role in energy metabolism. We have previously described the importance of the kinin B1 receptor (B1R) in metabolism regulation. Considering that the liver manages the different energy demands of different body tissues, we combined two stressful conditions - fasting and voluntary exercise - to address how B1R may affect liver metabolism, focusing on mitochondrial function. AIMS: To investigate how the kinin B1 receptor (B1R) modulates mitochondrial activity under stress conditions, focusing on the rate of energy expenditure and shift in metabolism. MAIN METHODS: Wild-type and B1R-knockout (B1KO) male mice remained in a calorimetric cage with a wheel for 7 days; 48 h before euthanasia, half of the animals from both groups were submitted to fasting conditions. Mitochondrial activity, ketone bodies, and gene expression involving mitochondrial activity were evaluated. KEY FINDINGS: B1R modulates the mitochondrial activity under fasting and voluntary exercise, reducing the VO2 expenditure and HEAT. B1KO animals who exercised and underwent fasting did not have increased glucose levels, suggesting a preference for lipids as an energy source. Moreover, these animals displayed RER around 0.8, which indicates a ß-oxidation increment. Interestingly, the lack of B1R did not induce mitochondrial activity and biogenesis, suggesting interference in metabolism responsivity, a condition modulated by sirtuins under PGC-1α control. SIGNIFICANCE: B1R modulates mitochondrial respiratory control ratios, which suggests metabolic suppression, influencing hepatic metabolism and, consequently, energy homeostasis.


Asunto(s)
Receptor de Bradiquinina B1 , Sirtuinas , Ratones , Animales , Masculino , Receptor de Bradiquinina B1/genética , Cininas , Ayuno , Mitocondrias/metabolismo , Cuerpos Cetónicos , Glucosa , Lípidos , Receptor de Bradiquinina B2/genética
17.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188807, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36167271

RESUMEN

Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.


Asunto(s)
Cininas , Neoplasias , Humanos , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal/fisiología , Microambiente Tumoral
18.
Am J Physiol Cell Physiol ; 323(4): C1070-C1087, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993513

RESUMEN

The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.


Asunto(s)
Cininas , Hormonas Peptídicas , Citocinas , Epidermis/metabolismo , Homeostasis , Humanos , Calicreínas/metabolismo , Quininógenos/química , Quininógenos/metabolismo , Cininas/metabolismo , Calicreínas de Tejido
19.
J Immunol Methods ; 509: 113343, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029800

RESUMEN

Lipopolysaccharide (LPS) is a major pathogen-associated pattern molecule that can initiate lethal sepsis. Bioactive peptides in amphibian skin secretions, especially antimicrobial peptides, are essential components of the host immune system and help fight the microbial invasion. In this study, two peptides: peptide 1 (KINRKGPRPPG) and peptide 2 (INRKGPRPPG) were isolated, from skin secretions of the Chinese red belly frog (Bombina maxima). After stimulation with LPS, peptide 1 showed direct LPS-binding activity, low cytotoxicity, immunoregulatory functions in vitro, and neutralizing LPS effects in animal models. Thus, natural peptide 1 exhibits potential as an ideal candidate against LPS.


Asunto(s)
Anuros , Lipopolisacáridos , Secuencia de Aminoácidos , Animales , Anuros/genética , Secuencia de Bases , Clonación Molecular , Cininas , Lipopolisacáridos/farmacología , Neuropéptidos , Péptidos/química , Piel
20.
Mol Immunol ; 150: 99-113, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030710

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Trombosis , Anticuerpos Monoclonales , Anticoagulantes/uso terapéutico , Antivirales/uso terapéutico , Proteína Inhibidora del Complemento C1/uso terapéutico , Progresión de la Enfermedad , Células Endoteliales , Humanos , Inflamación/tratamiento farmacológico , Calicreínas , Cininas , SARS-CoV-2 , Tromboinflamación , Trombosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...